Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding.
نویسندگان
چکیده
In this paper, we propose a novel mechanism for suppression of higher-order modes (HOMs), namely multiple resonant coupling, in all-solid photonic bandgap fibers (PBGFs) with effectively large core diameters. In an analogy to the well-known tight-binding theory in solid-state physics, multiple anti-resonant reflecting optical waveguide (ARROW) modes bound in designedly arranged defects in the cladding make up Bloch states and resultant photonic bands with a finite effective-index width, which contribute to the suppression of HOMs. In particular, contrary to the conventional method for the HOM suppression using the index-matching of the HOMs in the core of the PBGF and the defect mode arranged in the cladding, the proposed mechanism guarantees a broadband HOM suppression without a precise structural design. This effect is explained by the multiple resonant coupling, as well as an enhanced confinement loss mechanism which occurs near the condition satisfying the multiple resonant coupling. Moreover, we show that the proposed structure exhibits a lower bending loss characteristic when compared to the conventional all-solid PBGFs. The simultaneous realization of the single-mode operation and the low bending loss property is due to the novel cladding concept named as heterostructured cladding. The proposed structure also resolves the issue for the increased confinement loss property in the first-order photonic bandgap (PBG) at the same time.
منابع مشابه
Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber
One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...
متن کاملDetailed theoretical investigation of bending properties in solid-core photonic bandgap fibers.
In this paper, detailed properties of bent solid-core photonic bandgap fibers (SC-PBGFs) are investigated. We propose an approximate equivalent straight waveguide (ESW) formulation for photonic bandgap (PBG) edges, which is convenient to see qualitatively which radiation (centripetal or centrifugal radiation) mainly occurs and the impact of bend losses for an operating wavelength. In particular...
متن کاملCross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering.
Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode coupling of higher-order modes. We analyze the modal regimes of the fibers having a mode field diameter o...
متن کاملDynamic control of higher-order modes in hollow-core photonic crystal fibers.
We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupl...
متن کاملEnhanced chemiluminescent detection scheme for trace vapor sensing in pneumatically-tuned hollow core photonic bandgap fibers.
We demonstrate an in-fiber gas phase chemical detection architecture in which a chemiluminescent (CL) reaction is spatially and spectrally matched to the core modes of hollow photonic bandgap (PBG) fibers in order to enhance detection efficiency. A peroxide-sensitive CL material is annularly shaped and centered within the fiber's hollow core, thereby increasing the overlap between the emission ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2011